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I. INTRODUCTION

Satellite ocean color imagery from the Coastal Zone Color
Scanner (CZCS) has clearly shown ti.e global distribution of
chlorophyll in the upper ocean (Feldman et al., 1989). The
spatial scales of chlorophyll variability illustrated in the
surface values were high and demonstrated that the surface bio-
logical distribution was much higher than originally thought
(Yoder et al., 1987).

The ocean's optical environment has a similar scale of high
variability. 1In Case 1 waters, where the biological distribution
covaries with the optical properties (Morel and Prieur, 1977),
global distributions of diffuse attenuation coefficient, K(490),
are similar to that of chlorophyll (Austin and Petzold, 1981;
Lewis et al., 1988). For the majority of the ocean environment,
the chlorophyll distribution is the primary controlling factor of
the diffuse attenuation coefficient. Coastal waters are also
influenced by terrigenous material (suspended sediment and
dissolved organics, i.e., gelbstoff), which has significant
influence on the optical properties. Ir Case 2 waters, the
optical wvariability is highly changeable ¢ 1d is responsive to
different types of physical oceanographic forcing. The processes
controlling the bio-optical environment on the ocean surface are
believed to be strongly linked toc physical processes. Under -
standing the interaction of these processes to  predict the
optical environment and identifying the scales of spatial and
temporal optical variability can be greatly improved through the
use of CZCS data (Arnone and LaViolette, 1991).

The Red Sea was selected to characterize the regional sur-
face optical environment and its interaction with the monsoon

seasons. The effect of monsoons was shown to increase signifi-
cantly the optical properties in the Arabian Sea (Arnone and
Oriol, 1990a). Within the Red Sea, the monsoon influence is not

as strong as in the Arabian Sea; therefore, these seasonal trends
were not expected to impact significantly the optical climate.
The Red Sea is affected by different physical oceanographic and
meteorological forces that produce changes in the surface and

subsurface ocean structure throughout the entire sea. The Red
Sea has different geographical provinces bounded by the bathyme-
try, physical circulation, and winds (Siedler, 1969). These

changing conditions within these provinces should have signifi-
cant influence on the bio-optical signature.

The objective of this report is to characterize the surface
optical properties within the Red Sea and determine the seasonal
significance of the monsoons. Monthly climatology of the surface
optical properties will be examined for a 2-year period, 1979 to
1980, to define the temporal variability. Additionally, statis-
tics of the optical properties occurring within different
provinces will be compared to the controlling forces within the
provinces. A comparison of how these individual provinces influ-
ence the total optical climate in the Red Sea will be addressed.




IT. QCEAN-ATMOSPHERE CONDITIONS IN THE RED SEA

The mean circulation of the Red Sea is driven mainly by
thermchaline processes resulting from elevated evaporation at the
surface 1in concert with the overall wind field (Siedler, 1969).
Although the Red Sea is connected to the Mediterranean Sea by the
Suez Canal, there is minimal exchange of water. The Strait of
Bab al Mandab in the southern Red Sea (figure 1) is the primary
exchange between the Red Sea and the Gulf of Aden. The real
separation between waters of the Red Sea and those of the Gulf of
Aden occurs at the Hanish Sill (100 m), where the channel is the
shallowest and where considerable mixing takes place. The basic
structure and circulation of the Red Sea water masses are
perturbed by the effects of seasonal changes in evaporation and
wind stress. Evaporation far exceeds precipitation in this
region, and there is no river inflow; therefore, the water budget
dictates a net inflow through the Strait of Bab al Mandab in
response to the evaporative loss in the Red Sea Basin. The
surface salinity of the Red Sea is high (approximately 40 ppt)
because of this evaporation of fresh water. The density of this
surface layer is elevated compared to the density of the adjacent
Arabian Sea. A circulation pattern develops so that the less
dense Arabian water flows on the surface through the Strait of
Bab al Mandab, and the Red Sea water outflows, at depth, near the
Hanish Sill (Siedler, 1969).

The Dbacsic circulation of the Red Sea is affected by marked
seasonal variations of the wind field, which is controlled by the
monsoon wind system. Over central Asia, during the Southwest
(SW) monsoon, there is usually a large area of low atmospheric
pressure which 1is connected to the North African low-pressure
trough and a high-pressure area over eastern Africa. Winds in
the Arabian Sea are from the southwest, changing to north-north-
west 1in the southern part of the Red Sea. During the Northeast
(NE) monsoon, there is a low-pressure field over eastern Africa
and high-pressure areas over central Asia and northern Africa.
Winds over the Arabian Sea are northeasterly, changing to
south-southeasterly in the southern part of the Red Sea. In the
northern Red Sea the prevailing wind is from north-northwest
year-round (Siedler, 1969) (figure 1).

The NE monsoon directs water from the Arabian Sea into the
Gulf of Aden, with continuing surface flow into the Red Sea
through the Strait of Bab al Mandab. A general cyclonic flow
results along the Red Sea coastline (figure 1). North of 20° N,
the average direction of the current is northwest, against the
prevailing winds. As a result of this opposition, a convergence
zone develops near 20° N (Halim, 1984). During the NE monsoon,
the surface waters flow northerly, sink in the northern Red Sea,
then return south as a warm, high-salinity, subsurface current
that flows out over the shallow sill into the Gulf of Aden
(Patzert, 1974) (figure 2). Cold, low-salinity water in the Gulf
of Aden, apparently due to seasonal upwelling of deep Arabian Sea
water along the southern coast of Arabia, flows over the sill and
mixes with Red Sea surface water (Jones and Browning, 1971).
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Figure 1. Mean Surface Current Direction and Wind Direction for
July and January (Halim, 1984).
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During the SW monsoon, the direction of the surface trans-
port is south-southeast down the Red Sea Basin. South of 20° N,
the currents are slightly stronger in the vicinity of the Strait
of Bab al Mandab. At this point, the surface water of the Gulf
of Aden flows into the Arabian Sea as an easterly current and is
replaced by water flowing from the Red Sea through the Strait of

Bab al Mandab (figures 1 and 2) (Morcos, 1970). During the SW
monsoon, the wind stress and thermohaline forces have opposite
effects. Three water masses are observed: (1) a surface layer

{at 40 m) that is outflowing, {(2) a layer cf deep Red Sea water
outflowing over the sill, and (3) a layer of Gulf of Aden water
inflowing between these two layers.

The monsoonal transition periods occur when the winds

reverse direction. Transitional months are April and October
(figure 2). The mean monthly currents are weakest and most var-
iable during transitional periods (Patzert, 1974). There 1is

also little or no flow through the Strait of Bab al Mandab during
transitional periods (Morcos, 1970).

ITII. OPTICAL PROPERTIES FROM CZCS

The ocean color imagery gathered by CZCS was used to deter-
mine monthly climatological diffuse attenuation coefficients from
January 1979 to December 1980. This period extended through one
complete NE monscvon and two complete SW monsoons. The NE monsoon
begins in October, peaks in January, and extends through April.
The SW monsoon commences in May, peaks in July, and continues
through September.

The CZCS collected approximately 66,000 2-minute scenes of
high-spectral resolution ocean color data from November 1978 to
June 1986. The CZCS was a multichannel scanning radiometer using
a rotating plane mirror at a 45-degree angle to the optic axis of
a Cassegrain telescope (Hovis et al., 1980). The rotating mirror
scans 360 degrees; however, only 80 degrees of data centered on
the spacecraft nadir are collected for ocean color measurements
at a ground resolution of approximately 800 m at nadir. The CZCS
had six spectral bands: five sensing backscattered solar radi-
ance and one sensing emitted thermal radiance. The channels were
selected to cover specific narrow chlorophyll absorption bands
and were designed to measure subtle ocean color signatures.

The level 1 CZCS data represent the "raw" data that are
uncalibrated and uncorrected for atmospheric contamination.
Level 2 products determine the ocean color and water leaving
radiance by removal of the atmospheric contamination. The atmos-
pheric signal contributes approximately 80 to 90 percent of the
total signal sensed at the satellite. The National Aeronautics
and Space Administration (NASA) Goddard Space Flight Center
(GSFC) processed the 66,000 2-minute scenes, using the atmos-
pheric correction of Gordon and Clark (1980) for water leaving
radiances at 443, 520, and 550 nm. This processing assumes the




670-nm chanuiel represents the aerosol path radiance and further
assumes a constant character to the aeroscl distribution (Ang-
strom coefficient = 0) (Feldman et al., 1989; Gordon and Clark,
1980; Arnone and Oricl, 1990a). GSFC cormrosites of CZCS imagery
generated 1level 2 and level 3 registerci products of monthly
averages of the normalized water leaving radiances (443, 520, and
550 nm}) at a spatial resolution of 20 km. This was performed by
taking full-resolution CZCS imagery (1 km) and a spatial averag-
ing of approximately 400 pixels from individual scenes to obtain
an average 20-km pixel. Additionally, the global CZCS database
further assumes a temporal averaging by collecting all spatially
averaged scenes from a l-month period and again averaging. There
are inherent sampling problems resulting from inconsistent data
coverage, which are recognized (Arnone and LaViolette, 1991;
Abbott and Zion, 1985; and Chelton and Schlax, 1991). The global
database produced a monthly mean water leaving radiance for the
entire life of the CZCS sensor.

The CZCS ocean color data represent water leaving radiance
within the surface layer, i.e., the first attenuation length,
1/K, (Gordon and McCluney, 1975). The determination of the
diffuse attenuation coefficient, K, at 490 nm can be computed
from the ratio of water leaving radiances derived from the CZCS
ocean color data (Austin and Petzold, 1981; Mueller et al.,
1990) . The wvalue of K(490) is a measure of the rate in which
visible radiation is attenuated in the surface ocean. Typically,
the subsurface vertical K(490) distribution can be considerably
different than the surface value (Kitchen and 2aneveld, 1990);
however, the surface distribution provides a realistic estimate
of the surface optical climatology. An optical climatological
database has been constructed based on the water leaving radi-
ances from GSFC processing of CZCS data (Arnone et al., 1990b).
These data have been combined and assembled on Write-Once-Read-
Many (WORM) optical disk. The database was constructed using
PC-SEAPAK software (Firestone et al., 1989; McClain et al.,
1990), and all processing used in generating the statistics was
compiled wusing PC-SEAPAK. Optical data from this database were
used in determining statistics of the Red Sea.

The monthly average K(490) distribution from January 1979 to
Dece~her 1980 was used to derive statistics of the optical char-
acter of the Red Sea. Six provinces were chosen which represent
significantly different ocean regimes from which statistics were
derived (figure 3). Waters entering the Gulf of Aden at the
Strait of Bab al Mandab are less dense (lower salinity) than
resident Red Sea waters. As these lower salinity waters mix,
they move northward and sink because of high evaporation and

cooling (Poisson et al., 1984). The northern region of the Red
Sea represents an elevated salinity of approximately 40 ppt
(Siedler, 1969). The changing salinity character formed by the
mixing of Gulf of Aden water and high-salinity subsurface water
has been used to segment provinces within the Red Sea. The

mixing processes at the surface are controlled by both geostroph-
ic circulation and surface wind stress. This physical forcing

6
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results in water-mass mixing and is believed responsible for con-
trolling the optical signatures observed in the following prov-
inces:

(1) Northern Red Sea (3700 sq km): represents the deep-
water, high-salinity area of the basin where upwelling occurs in
October (Poisson et al., 1984) and is characterized by hot brine
pools and a reduction in biological activity below 1100 m (Gi-
deiri, 1984). Bottom water is formed during the winter season in
the Northern Red Sea (Morcos, 1970).

(2) Central Red Sea (5340 sq km): represents the transition
area where Gulf of Aden surface water begins to '"pile up" at
approximately 20° N and then sinks below the Red Sea resident
waters.

(3) South Central Red Sea (2140 sqg km): represents the area
of increased variability caused by the less dense Gulf of Aden
waters entering the Strait of Bab al Mandab and mixing with the
resident denser waters of the Red Sea.

(4) Lower Coastal Red Sea (5560 sq km): represents biologi-
cally rich waters resulting from upwelling of deep water near the-
Hanish Sill (Cember, 1988). This relatively shallow area has

multiple coral reefs along the coast.

(5) Gulf of Aden (3700 sqg km): characterized by less dense
waters with salinities less than 37 ppt and cooler temperatures
(18 ©C), which result from cooler, monsoon-driven, upwelled Ara-
bian Sea water.

(6) Total Red Sea (26,800 sq km): represents a composSite
region from which different provinces will be compared to deter-
mine each region's contribution.

IV, RESULTS

The monthly CZCS composite of K(490) are shown in figures 4
through 10. These images, representing January 1979 to December
1980, have been registered to an equirectangular projection and
pseudocolored to represent the optical property distribution.
The K(490) color scale that appears in figures 4 and 10 applies
to the entire sequence.

During the NE monsoon (November), pelagic organisms enter
the Red Sea from the Gulf of Aden and diffuse northward through
the Red Sea Basin (Halim, 1984). Observed optical properties of
the Red Sea obtained from CZCS indicate a similar biological
productivity decrease from south to north. There is a slight
increase in the value of K(490) for all regions of the Red Sea
during the NE monsoon (November to April) compared to the SW
monsoon {(May to October).
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The statistics of the K(490) distribution in the six regions
obtained from the CZCS data are displayed in figures 11 through
16. The mean monthly K(4%90) values for 1979 and 1980 and the
interannual differences are depicted on these regional plots.
The standard deviation is also shown.

In the Northern Red Sea, K(490) remains relatively con-
stant, with values ranging from 0.030 to 0.036 (figure 11).
North of 20° N, the Red Sea is considered oligotrophic as a re-
sult of reduced nutrients (Auras-Schudnagias et al., 1989) and
low biological activity. This area does not show any seasonal
trend and similarly has a low standard deviation of approximately
0.05. The monsoon season has minimal influence on this region's
optical properties.

The Central Red Sea (figure 12) remains relatively constant,

with K(490) ranging from 0.0288 to 0.0381. This region is
characterized by low K(490) values, suggesting 1low biological
activity. A modest increase in K(490) of 0.035 is observed 1in

September. There is also an increase in variability, which sug-
gests a slight response to the monsoon season.

The K(490) values in the South Central Red Sea are slightly
higher (0.0350 to 0.0476) than the Central Red Sea region (figure
13). A seasonal response is observed with the lowest values
occurring during the SW monsoon and the highest values occurring
during the NE monsoon.

The Lower Coastal Red Sea is an area of high biological
activity where 95 percent of the zooplankton biomass is located
in the wupper 100 m (Halim, 1984). Elevated K({(490) values are
observed in the lower coastal region (figure 14). These values
range from 0.0496 to 0.1532 for 1979 to 1980 and correspond to
the shallow waters of the coral reef zone (figure 1). This
region similarly shows the greatest optical variability. The
lowest values occur during the SW monsoon and the highest values
occur at the onset of the NE monsoon.

The comparison of average K(490) for each Red Sea region to
the Total Red Sea is shown in table I. Average K(490) values
listed in the table represent the average for each month over the
period of 1979 to 1980. The values represent a percentage above
or below the Total Red Sea average of 100 percent. To calculate
this, the average (K,) per region was divided by the mean (Kp) of
the Total Red Sea ané multiplied by 100 (K;/Kp x 100). For exam-
ple, in November the Lower Coastal Red Sea region had a mean
K(490) 65 percent greater than the average K(490) of the Total
Red Sea. Similarly, the Northern Red Sea region in September had
an average K(450) 45 percent lower than the average for the en-
tire Red Sea K(490).

The Lower Coastal Red Sea region had significantly higher

K(490) than the average Total Red Sea for all months. This
region elevated the Total Red Sea average. The other regions

25
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Table I. Comparison of Average K(490) Per Region to
Average K(490) of Total Red Sea.

South Lower

North Central Central Coastal Total
Jan 60.8949 64.8485 87.1526 165.4668 100.0
Feb 77.4987 76.7236 96.6592 157.6150 100.0
Mar 69.6522 70.3804 85,7810 157.7709 100.0
Apr 76.1832 78.8182 84.0334 194.7476 100.0
May 89.2629 92.2727 104.3382 137.1827 100.0
Jun 68.5058 68.1009 75.8909 120.7068 100.0
Jul 92.9512 84.5732 112.3467 145.2791 100.0
Aug 57.8743 76.6274 77.0918 176.4385 100.0
Sep 55.0645 67.2525 77.5260 174.4718 100.0
Oct 58.7955 66.0000 81.2233 178.6783 100.0
Nov 57.5848 67.8689 109.7960 264.4776 100.0
Dec 72.4050 74.5525 106.7315 194.3765 100.0
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were substantially lower than the average. The Lower Coastal Red
Sea region exhibited the greatest variability for the 2-year pe-
riod, which reflects higher biological activity around the coast-
al areas and coral reef zones. Table I shows that the Lower
Coastal Red Sea has consistently higher K(490) compared to the
average. This is followed by the South Central Red Sea region,
which has K(490) close to the average. The Central Red Sea and
Northern Red Sea regions have lower K(490) than the average.

According to table I, the percentage of contribution in the
Lower Coastal Red Sea increases markedly in November, which 1is
the onset of the NE monsoon. At this time, cooler water is flow-
ing into the Lower Coastal Red Sea from the Gulf of Aden (Jones
and Browning, 1971), causing increased productivity and higher
K(490). Northern Red Sea values are highest in July, which cor-
responds to the peak of the SW monsoon. During this monsocon,
deep water is upwzlled in the Northern Red Sea due to prevailing
north-northwesterly winds (Siedler, 1969). The South Central Red
Sea also has a greater contribution (12 percent over total aver-
age) during July. This can be explained by the convergence zone
that develops near 20° N as a result of the average northwest
current direction and opposing south-southeasterly winds (Halim,
1984). The Central Red Sea average contribution remains basical-
ly consistent for the 2-year period.

The Total Red Sea region (figure 15) has a high standard
deviation, resulting from different optical regimes, and a range
of K(490) from 0.0348 to 0.0605. The highest K(490) values are
observed in August, September, and November. The greatest vari-
ability occurs at the beginning of the NE monsoon (November) as
the biclogical activity responds to strong mixing. The bar graph
at the bottom of figure 15 shows that the 1979 optical data was
substantially greater than the 1980 data. These interannual
changes are perhaps related to the strength of the monsoons and
account for the high standard deviation cbserved.

Values of K(490) in the Gulf of Aden range from 0.0286 to
0.0602. The Gulf of Aden region (figure 16) has a strong season-
al response to the monsoons. Low K(490) wvalues are observed
during the SW monsoon. An increase in K(490) is observed between
October and November. The variability of K(490) ranges from
0.0286 in June to 0.0602 in December. The highest standard
deviation is observed in August.

V. CONCLUSTIONS

The CZCS data can be used for determining optical character-
istics of the Red Sea. The 24-month period selected from 1979 to
1980 demonstrated the variability in K(490). The K(490) changes
obgserved in the Red Sea are believed to be coupled with the
seasonal effects of the monsoons. The Northern and Central Red
Sea regions exhibited 1low variability and appeared to be
influenced minimally by the monsoons. The Southern Red Sea
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exhibited moderate variability. The Lower Coastal Red Sea had
the greatest variability. Both southern regions appeared to be
closely coupled to nonsoonal influence.

The 1979 and 1980 data showed considerable differences in
K(490) values on a monthly scale. The interannual variability
observed in 2 vyears indicated that a doubling of K(490) can
occur. This suggested that local seasonal events responding to
changing monsoonal conditions has significant impact on predict-
ing the optical environment. To more properly represent the
average optical environment in the Red Sea, statistics must be
gathered from a larger data set, which would entail the use of
the entire 6-year CZCS data set,
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